Notes in the Exposure of Several Species of Fish to Sudden Changes in the Hydrogenion Concentration of the Water and to an Atmosphere of Pure Oxygen

Author(s):  
A. H. Wiebe
Author(s):  
R. H. Geiss ◽  
R. L. Ladd ◽  
K. R. Lawless

Detailed electron microscope and diffraction studies of the sub-oxides of vanadium have been reported by Cambini and co-workers, and an oxidation study, possibly complicated by carbon and/or nitrogen, has been published by Edington and Smallman. The results reported by these different authors are not in good agreement. For this study, high purity polycrystalline vanadium samples were electrochemically thinned in a dual jet polisher using a solution of 20% H2SO4, 80% CH3OH, and then oxidized in an ion-pumped ultra-high vacuum reactor system using spectroscopically pure oxygen. Samples were oxidized at 350°C and 100μ oxygen pressure for periods of 30,60,90 and 160 minutes. Since our primary interest is in the mechanism of the low pressure oxidation process, the oxidized samples were cooled rapidly and not homogenized. The specimens were then examined in the HVEM at voltages up to 500 kV, the higher voltages being necessary to examine thick sections for which the oxidation behavior was more characteristic of the bulk.


2013 ◽  
Vol 23 (3) ◽  
pp. 82-87 ◽  
Author(s):  
Eva van Leer

Mobile tools are increasingly available to help individuals monitor their progress toward health behavior goals. Commonly known commercial products for health and fitness self-monitoring include wearable devices such as the Fitbit© and Nike + Pedometer© that work independently or in conjunction with mobile platforms (e.g., smartphones, media players) as well as web-based interfaces. These tools track and graph exercise behavior, provide motivational messages, offer health-related information, and allow users to share their accomplishments via social media. Approximately 2 million software programs or “apps” have been designed for mobile platforms (Pure Oxygen Mobile, 2013), many of which are health-related. The development of mobile health devices and applications is advancing so quickly that the Food and Drug Administration issued a Guidance statement with the purpose of defining mobile medical applications and describing a tailored approach to their regulation.


Alloy Digest ◽  
2011 ◽  
Vol 60 (1) ◽  

Abstract Wieland-K11 is a pure, oxygen-free copper for many electronic and glass sealing applications. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and bend strength. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: Cu-794. Producer or source: Wieland Metals Inc., Wieland-Werke AG.


2019 ◽  
Vol 31 (2) ◽  
pp. 022518
Author(s):  
Frédéric Coste ◽  
Martina Ridlova ◽  
Nicolas Gallienne ◽  
Jacques Quintard ◽  
Gabriel Bert

1967 ◽  
Vol 10 (12) ◽  
pp. 1583-1584
Author(s):  
Yu. M. Abdeev ◽  
V. P. Zinov'ev ◽  
S. P. Makarevich

2015 ◽  
Vol 71 (4) ◽  
pp. 588-596 ◽  
Author(s):  
M. C. Collivignarelli ◽  
G. Bertanza ◽  
M. Sordi ◽  
R. Pedrazzani

This research was carried out on a full-scale pure oxygen thermophilic plant, operated and monitored throughout a period of 11 years. The plant treats 60,000 t y−1 (year 2013) of high-strength industrial wastewaters deriving mainly from pharmaceuticals and detergents production and landfill leachate. Three different plant configurations were consecutively adopted: (1) biological reactor + final clarifier and sludge recirculation (2002–2005); (2) biological reactor + ultrafiltration: membrane biological reactor (MBR) (2006); and (3) MBR + nanofiltration (since 2007). Progressive plant upgrading yielded a performance improvement chemical oxygen demand (COD) removal efficiency was enhanced by 17% and 12% after the first and second plant modification, respectively. Moreover, COD abatement efficiency exhibited a greater stability, notwithstanding high variability of the influent load. In addition, the following relevant outcomes appeared from the plant monitoring (present configuration): up to 96% removal of nitrate and nitrite, due to denitrification; low-specific biomass production (0.092 kgVSS kgCODremoved−1), and biological treatability of residual COD under mesophilic conditions (BOD5/COD ratio = 0.25–0.50), thus showing the complementarity of the two biological processes.


1960 ◽  
Vol 33 (2) ◽  
pp. 361-372 ◽  
Author(s):  
B. A. Dogadkin ◽  
O. N. Beliatskaya ◽  
A. B. Dobromyslova ◽  
M. S. Feldshtein

Abstract 1. The vulcanization of rubber in the presence of N,N-diethyl-2-benzothiazolylsulfenamide is characterized by an S-shaped curve for the addition of sulfur with an initial induction period in the reaction. The modulus and number of crosslinks are changed in an analogous manner to the structure of the vulcanizate. 2. The energy of activation of the addition of sulfur in the initial period is equal to 30 kcal per mole as against 14 kcal per mole in the main period. 3. The induction period is increased if the sodium-butadiene rubber is purified from alkali. 4. Molecular oxygen present in the compound being vulcanized decreases the induction period and increases the rate of the addition of the sulfur in the main period. An induction period is not observed when vulcanization is carried out in an atmosphere of pure oxygen. 5. The interaction of N,N-diethyl-2-benzothiazolylsulfenamide with rubber (in the absence of sulfur) at vulcanization temperatures is accompanied by the formation of MBT, diethylamine, and the addition of the elements of the accelerator to the rubber. The kinetics of this process were studied. 6. The interaction of N,N-diethyl-2-benzothiazolyl sulfenamide with rubber leads to the formation of chemical crosslinks between the molecules of rubber (the effect of vulcanization). 7. The change of N,N-diethyl-2-benzothiazolyl sulfenamide under the conditions of normal sulfur vulcanization has the same character as in the interaction of it with rubber. The kinetics of the formation of MBT have a maximum which coincides with the maximum rate of the addition of sulfur to the rubber. 8. A mechanism is presented for the vulcanization and acceleration actions of N,N-diethyl-2-benzothiazolyl sulfenamide which provides for the extraction of hydrogen by the accelerator radicals from the molecular chains of the rubber with the formation of MBT, diethylamine and polymer radicals which are able to interact with the sulfur.


Sign in / Sign up

Export Citation Format

Share Document